326
this post was submitted on 04 Jul 2025
326 points (97.9% liked)
Technology
72360 readers
2865 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
97% sounds impressive, but thats equivalent to almost an hour of blackout every day. Developed societies demand +99.99% availability from their grids.
Then get it from the sources that already exist. 97% coverage is a great milestone.
97% is great (though that is just for vegas) but it is still a long way from enough. Its a truism of availability that each 9 of uptime is more difficult to get to than the last, i.e. 99.9% is significantly more difficult/expensive than 99%
The problem here is that you cant simultaneously say "Solar is so much better than everything else we should just build it" and "we'll just use other sources to cover the gaps". Either you calculate the costs needed to get solar up to very high availability or you advocate for mixed generation.
None of which is to say that solar shouldnt be deployed at scale, it should. We should be aware of its limitations howver and not fall prey to hype.
What you do is get weather data for sunlight and wind. The two combine to cover some of the lull in the other. From historical data, you can calculate the maximum lull where neither are providing enough. Double that as a safety factor, and that's how much battery you need.
Doing this is by far the cheapest way to get to 95% clean energy everywhere. That would be a total game changer.
The difficulty there is that there are a lot of places where you frequently get multiple weeks of both solar and wind at <10% capacity (google for dunkelflaute) that would need an implausible amount of storage to cover.
The OP article is already talking about 5x overbuilding solar with 17h of storage to get to 97% in the most favourable conditions possible. I dont see how you can get to an acceptably stable grif in most places without dispatchable power.
It's not that bad. This is an actual technique in use, and it drastically decreases how much storage you need.
The biggest problem has been convincing capitalism to do it. They've been building solar like nuts because that's the cheapest per MW of anything on simple Excel spreadsheets. More mathematical nuance would show that if everyone does this, it's just going to cause overproduction and wasted potential on very sunny days. You need all three, and toss in some hydro and geothermal, as well.