Das ist denke ich so nicht ganz richtig.
In den 50ern standen such-basierte ansätze im vordergrund die automatisiert Spiele wie Schach spielen, mathematische Theoreme beweisen, oder allgemein logische schlüsse ziehen konnten. Mein taschenrechner kann das nicht. (Neuronale netze gab es auch schon, wenn auch nicht ganz in der heutigen form.)
Als sich das als zu unflexibel für reale anwendungsfälle erwies wurde im bereich probabilistische systeme gearbeitet, welche mit unsicherheit umgehen konnten. Aber auch hier kannte man die regeln nach denen das system arbeitet noch.
In den 90ern, als es durch mehr EDV auch größere datensätze gab, haben sich in eineigen anwendungsfällen machine learning systeme durchgesetzt, welche die regeln anhand von daten selbst lernen.
Seit den 10ern hat sich gezeigt, dass sich machine learning ansätze, insbesondere neuronale netze, mit mehr daten und rechenleistung scheinbar beliebig skallieren lassen. Und das ist im wesentlichen das, was seit 11 jahren passiert.
LLM sind nur skalierte machine learning modelle für sprache. Die grundlagen kommen aber aus den 50/60ern.
Ja, das stimmt wohl.