Emil

joined 2 years ago
MODERATOR OF
 

China has completed pouring concrete over the outer dome of the containment building for the Zhangzhou-2 nuclear power plant under construction in Fujian province, southeastern China.

According to the China Nuclear Energy Association (CNEA), the move marked the completion of the main structure and paves the way for cold functional testing at the plant.

Zhangzhou-2 is a domestic 1,126-MW HPR1000, or Hualong One, pressurised water reactor (PWR).

Construction began in September 2020 and the unit is scheduled for commercial operation in 2025, according to earlier reports.

There are three other Hualong One PWRs under construction and commissioning at the site. Last month, China National Nuclear Corporation (CNNC) said it started fuel loading at Zhangzhou-1.

Construction of Zhangzhou-3 and -4 began in Feb 2024 and Sep 2024.

The Hualong One is an indigenous, three-loop pressurised water reactor. It incorporates elements of CNNC’s ACP1000 and China General Nuclear’s ACPR1000+ reactor designs.

It is Beijing’s domestic flagship reactor technology, with 17 of the 28 reactor units under construction in China being of the Hualong One design. There are also two Hualong One plants in operation outside China, both in Pakistan at the Kanupp nuclear station, also known as Karachi.

 

The US energy regulator’s rejection of a special deal that would have allowed an Amazon Web Services (AWS) data centre to use more power from a nuclear power station will have a chilling effect on economic development in states such as Pennsylvania, Ohio, and New Jersey, the station’s operator has said.

Federal Energy Regulatory Commission (Ferc) commissioners voted 2-1 against a proposal that would have increased the amount of power supplied to an Amazon data centre next to the Susquehanna nuclear facility owned by Talen Energy.

The commissioners said the plan, which was an amendment filed by the regional grid operator on behalf of the parties, did not adequately prove why the special contract should be allowed under federal rules.

The plan would set a precedent and the issues should be reviewed more closely, they said.

Ferc chairman Willie Phillips dissented, saying that the grid operator addressed reliability issues and called the order “a step backward” for both electricity reliability and national security.

Talen believes Ferc erred and “we are evaluating our options” with a focus on commercial solutions. “We believe this ISA [interconnection service agreement] amendment is just and reasonable and in the best interest of consumers.”

In March, AWS paid Talen $650m (€596m) for a 960-MW data centre campus next to the Susquehanna station in Pennsylvania, and signed a long-term agreement to buy power from the plant.

The data center, Cumulus Data Assets, sits on a 1,200-acre (485 hectares) campus in Pennsylvania and is directly powered by the adjacent Susquehanna Steam Electric Station, which generates 2.5 gigawatts of power.

Talen Energy subsidiary Cumulus Data completed construction on the first building at the nuclear-powered data centre campus in January 2023.

In June, PJM Interconnection, which operates the eastern US grid, serving more than 65 million people, sought approval from Ferc to increase the amount of power used onsite to from 300 MW to 480 MW.

Utility owners American Electric Power and Exelon filed a complaint opposing the move, arguing that it could threaten grid reliability and raise customer rates.

Talen said its co-location arrangement with Amazon would bring service to the customer quickly and without expensive transmission upgrades necessary to serve large-load demand.

“But our direct-connect configuration is just one of several commercial solutions to the demand of large loads, and we are exploring other solutions as we move forward,” a statement said.

It said: “The data centre economy will require an all-of-the-above approach to satisfy the increased demand, including co-location such as Talen’s arrangement with AWS, hybrids that co-locate primary power behind the meter while using grid power for back-up, and front-of-the-meter connections to utility transmission. Talen looks forward to the continued dialogue.”

The federal order came on the heels of a day-long Ferc technical conference on the topic, which discussed the merits and challenges of co-locating data centres with existing power plants, also dubbed “behind-the-meter” demand.

 

AtkinsRéalis company Candu Energy Inc has announced it is entering into a special project with Canadian nuclear regulators to plan for a Pre-Licensing Design Review of the new Candu Monark reactor's suitability to be licensed and built in Canada.

The 1000 MW Candu Monark, a Generation III+ reactor with the highest output of any Candu technology, was unveiled in November 2023. The conceptual design phase of the reactor was completed in September, and AtkinsRéalis plans to complete the preliminary engineering by 2027.

"Reactor development is a key differentiator for us as we have the exclusive licence to deploy one of only a few large reactor technologies available worldwide, and so we have extensive experience navigating the nuclear licensing process in Canada," said Joe St Julian, AtkinsRéalis President, Nuclear. "As the world enters a nuclear market super-cycle with estimated demand for 1,000 new reactor builds, we remain on track to complete the Candu Monark's design by 2027, positioning the first Candu Monark new build to begin as early as 2029 and be completed by the mid-2030s."

The special project will familiarise Canadian Nuclear Safety Commission (CNSC) staff with the design and allow them to provide feedback on what will be needed in a future pre-licensing design review.

The CNSC's optional vendor design review (VDR) process enables CNSC staff to provide feedback to a vendor early on in the design process. Such a review aims to verify, at a high level, that Canadian nuclear regulatory requirements and expectations, as well as Canadian codes and standards, will be met as well as helping identify, and potentially resolve, any fundamental barriers to licensing for a new design in Canada. AtkinsRéalis said it believes completion of a VDR was an added measure that offers predictability to a purchasing utility.

A typical VDR includes three phases, but since the Candu Monark's design heavily leverages the platform of past Candu reactor models which have fully completed all three phases of the regulator's VDR, as well as those that have already been licensed and built, the company said it has asked the CNSC to consider two possible types of pre-licensing design review: either a VDR, or a preliminary regulatory design assessment.

The special project between the CNSC and AtkinsRéalis will see the regulator's experts develop a schedule and estimate for both a VDR and a preliminary regulatory design assessment, reflecting the impact of the range of improvements and modernisations made to Candu Monark technology, their variance to past Candu designs that have already gone through all three VDR phases, and any relevant changes to regulatory requirements and expectations.

"AtkinsRéalis will then be able to evaluate which of these pathways will be most suitable in supporting the Candu Monark design programme, with the goal of seeking rigorous review and feedback on the Candu Monark's design in support of ensuring that any eventual Candu Monark new build project can be undertaken with confidence in the licensing costs and timeline," the company said.

3
submitted 7 months ago by Emil to c/nuclear
 

Leadership of the UK's STEP (Spherical Tokamak for Energy Production) programme has transitioned to UK Industrial Fusion Solutions Ltd, a wholly-owned subsidiary of the UK Atomic Energy Authority.

The establishment of UK Industrial Fusion Solutions Ltd (UKIFS) as a new delivery body for the UK's fusion programme was announced in February 2023 by then Science Minister George Freeman.

UKIFS will lead a public-private partnership that will design, build and operate the STEP prototype fusion plant at the West Burton power plant site in Nottinghamshire, England. The West Burton site was selected to host STEP in October 2022.

The UK Atomic Energy Authority (UKAEA) - which carries out fusion energy research on behalf of the government - said it will continue to be STEP's fusion partner, working alongside two industry partners – one in engineering and one in construction – to spearhead the development of a UK-led fusion industry.

"A major procurement exercise is currently under way to select STEP's strategic, long-term industry partners, with the shortlist expected to be announced by the end of the year," the UKAEA said.

"The launch of UK Industrial Fusion Solutions demonstrates significant progress and commitment to developing fusion as a viable clean energy source, and also to creating a UK-led fusion industry," said Paul Methven, CEO of UKIFS and Senior Responsible Owner for STEP. "STEP is a national endeavour with global impact, and we will continue to work closely with public and private sector partners to ensure the UK remains at the forefront of a revolutionary sustainable new energy source that will drive economic growth."

Ian Chapman, CEO of UKAEA, said: "UKIFS brings together an experienced team dedicated to translating decades of fusion research into a functioning prototype plant that will be capable of supplying low-carbon, safe, and sustainable energy to the grid. UKIFS will integrate partners in a national endeavour to build STEP as well as focussing on delivering enormous social and economic benefits to the UK, especially for the East Midlands region where the plant will be built."

The aim for the first phase of work on STEP is to produce a 'concept design' by the end of this year. The UK government is providing GBP220 million (USD285 million) of funding for this part. The next phase of work will include detailed engineering design, while all relevant permissions and consents to build the prototype are sought. The final phase is construction, with operations targeted to begin around 2040. The aim is to have a fully evolved design and approval to build by 2032, enabling construction to begin. The demonstration plant is due to begin operating by 2040.

The technical objectives of STEP are: to deliver predictable net electricity greater than 100 MW; to innovate to exploit fusion energy beyond electricity production; to ensure tritium self-sufficiency; to qualify materials and components under appropriate fusion conditions; and to develop a viable path to affordable lifecycle costs.

3
submitted 7 months ago by Emil to c/nuclear
 

US-based company Amentum has been awarded a contract worth an estimated EUR5.5 million (about USD6 million) to consult for the first-of-a-kind dismantling of steam drum separators at units 1 and 2 of the Ignalina nuclear power plant in Lithuania.

The seven-year contract with Ignalina Nuclear Power Plant (INPP) will be implemented under International Federation of Consulting Engineers (FIDIC) Yellow Book Conditions, administered by the European Bank for Reconstruction and Development (EBRD) and funded by European Commission grants.

Lithuania assumed ownership of the two RBMK-1500 units - light-water, graphite-moderated reactors, similar to those at Chernobyl - in 1991, after the collapse of the Soviet Union. It agreed to shut down the Ignalina plant as a condition of its accession to the European Union, with unit 1 shutting down in December 2004 and unit 2 in December 2009. The reactors are expected to be fully decommissioned by 2038, with most of the cost of the decommissioning being funded by the European Union via the EBRD and other funds.

Amentum said it will provide consultancy services to support INPP's Project Management Unit and carry out the duties of FIDIC Engineer for the dismantling contract. It will help INPP to manage the removal of the steam drum separators, which are large drums installed over the graphite core to divert steam to the turbines. The Project Management Unit will oversee the design and safety justification for dismantling and fragmentation of the drums and associated equipment. These are located in the plant’s radiologically contaminated primary circuit.

"We will deploy our extensive nuclear decommissioning and waste management experience from the UK, France, Czechia and Slovakia to this ground-breaking project,” said Andy White, who leads Amentum Energy & Environment International.

Amentum was created in early 2020 from the spin-off of US-based global infrastructure firm AECOM's Management Services business. Through its heritage firms, Amentum has been working at Ignalina for more than 20 years on projects including the delivery of the New Interim Spent Fuel Storage Facility and other facilities required for decommissioning.

In September, Amentum completed a merger with Jacobs Solutions Inc's Critical Mission Solutions and Cyber and Intelligence government services businesses to form an independent, publicly traded company called Amentum Holdings, Inc. The combination was described by Amentum CEO John Heller as transformational for the company, forming a "global leader in advanced engineering and innovative technology solutions".

 

The International Atomic Energy Agency has reported that "a small water leakage was detected from an impulse line - essentially a small pipe - connected to" Zaporizhzhia nuclear power plant's first unit’s primary circuit, with repairs taking place and no "immediate issue for nuclear safety".

According to the update from the IAEA, the repairs required the pressure in the primary circuit to be decreased to atmospheric levels and the operators of the plant - which has been under Russian military control since March 2022 - told them on Thursday the welding work had been completed and radiography checks of the welds were on-going.

Director General Rafael Mariano Grossi said: "The agency will continue to follow this issue closely, although we don’t see any immediate issue for nuclear safety. In general, we have identified regular equipment maintenance - which is vital to ensure sustainable nuclear safety and security - as a challenging area for the Zaporizhzhia nuclear power plant during the conflict."

All six of Zaporizhzhia's units have been in cold shutdown and, following this shutdown for maintenance, unit 1 is expected by the IAEA to be put back into cold shutdown.

The operators of the plant said on Telegram that a "microcrack in the pipeline was discovered and promptly eliminated", and after testing has confirmed the successful repair "it will be put into operation". The update added that radiation levels at the plant and surrounding area was unchanged.

The IAEA has had experts stationed at the Zaporizhzhia plant for more than two years, seeking to protect nuclear safety and security at the site, which is close to the frontline of the Ukrainian and Russian forces. The IAEA says the current team at the plant "continue to hear explosions daily, although no damage to the plant was reported".

There are also IAEA teams at Ukraine's three other operating nuclear power plants, with those at Khmelmnitsky reporting that drones had flown within 400 metres of the plant. Grossi said: "Frequent reports of drones flying near nuclear power plants continue to be a source of deep concern for nuclear safety and security. As we have stated repeatedly, any military activity in the vicinity of nuclear power plants represents a potential risk."

 

Global Atomic said it anticipates securing a project financing loan from a US development bank by early in the first quarter of 2025 to advance its Dasa uranium project in Niger.

The Canada-based company reported that in recent discussions, the bank confirmed its intention to approve a $295m (€271m) debt facility, which would cover 60% of the project’s projected costs.

Dasa is the highest-grade uranium deposit in Africa, surpassed only by grades found in Canada’s Athabasca Basin, and is scheduled to achieve commercial production in early 2026.

“The approval timelines outlined by the bank support yellowcake deliveries in 2026 as anticipated in the four offtake agreements we have in place with American and European nuclear power utilities,” said Global Atomic president and chief executive officer Stephen Roman.

“To help fund the continuing development of Dasa until the bank funds are available, earlier this month we raised CAD40 million [€26m, $29m] in an oversubscribed public offering.”

In addition to the unnamed development bank, Global Atomic is in discussions with parties regarding potential joint venture investment in the Dasa Project and other financing solutions, the company said.

According to Global Atomic, earthworks and civil engineering are progressing in preparation for the installation of plant equipment, components of which are now arriving at the site.

In August it emerged that the US development bank postponed a scheduled July presentation about the Dasa project to its credit committee, with Global Atomic saying it would move to “finalise other financing discussions” if there were further delays.

The Nigerien government has pledged its full support for the Dasa project, but other uranium developers in Niger faced major setbacks this past summer.

In June, Niger’s ruling military junta, which came to power following a coup in July 2023, revoked the operating licence of French company Orano at the Imouraren mine, which sits on one of the biggest uranium deposits in the world.

Orano said last week it would halt its uranium production in Niger from 31 October, citing a “highly deteriorated” situation and its inability to operate.

In July, Canada-based GoviEx Uranium said the junta had withdrawn its licence for the Madaouela uranium mine, dealing a major blow to the development of one of the world’s largest uranium projects.

The coup led the US to suspend government funding for Dasa. Still, the company managed to raise CAD15m in January and CAD20m in July by selling stock.

 

A consortium led by Belgian engineering firm Tractebel has completed the European Space Agency-commissioned RocketRoll project on nuclear electric propulsion for space exploration. The consortium has defined a comprehensive technology roadmap to equip Europe with advanced propulsion systems capable of undertaking long-duration missions.

The RocketRoll project - or 'Preliminary European Reckon on Nuclear Electric Propulsion for Space Applications' - brought together leading stakeholders in aerospace and nuclear within a consortium led by Tractebel that includes the French Alternative Energies and Atomic Energy Commission (CEA), ArianeGroup, Airbus and Frazer Nash. It also included researchers from the University of Prague, the University of Stuttgart and engineers from OHB Czechspace and OHB System in Bremen.

The partners studied the feasibility of an electric nuclear propulsion (NEP) system where the electricity produced by a nuclear power reactor powers electric ion thrusters - ionising a gas and accelerating the ions produced, which are then ejected to generate thrust. This method's thrust is lower but continuous, and with far greater fuel efficiency it has higher speeds and could cut 60% off the Mars travel time of traditional chemical rockets.

"Thanks to its huge energy density, NEP offers disruptive advantages in terms of speed, autonomy, and flexibility," Tractebel said. "This innovative propulsion technology has the potential to transform space exploration and space mobility by enabling longer-duration missions, potentially shaping the future of interplanetary exploration."

The RocketRoll project, which started more than a year ago and concluded last month, has now submitted a technology roadmap to develop an NEP system, including a candidate design for a demonstrator spacecraft that could flight test NEP systems for deep space missions by 2035.

"I am proud to lead such an important initiative in nuclear electric propulsion, which could enable exploration and in-space logistics in Earth Orbit and beyond on a scale that neither chemical nor electrical propulsion could ever achieve," said Brieuc Spindler, Space Product Owner, Tractebel. "I am committed to navigating the intricate technical and strategic challenges ahead. By leveraging its nuclear expertise and innovative solutions, Tractebel helps advance space technologies and push the boundaries of the final frontier's exploration."

Currently, European space missions depend on external sources for nuclear capabilities. Tractebel says its strategy is to engineer a range of nuclear power solutions, from radioisotope to fission systems, while also contributing to developing a European value chain for nuclear solutions in space applications.

According to the European Space Agency: "NEP would enable exploration and in-space logistics in Earth Orbit and beyond on a scale that neither chemical nor electrical propulsion could ever provide. The ultimate raison d'être of NEP is to explore beyond Mars orbit where solar power is limited.

"In addition, NEP could have strong synergies with other space application. For instance, nuclear power could be used on the Moon or Mars surface to power future habitats or robotic exploration of the solar system, or in space for other purpose than propulsion."

 

A new strategic partnership between Kazakhstan and Mongolia's national atomic companies will provide new opportunities for the uranium industries of both countries, Kazatomprom's CEO has said.

The agreement to establish a partnership with MonAtom LLC was a "significant" result of the recent visit by President Kassym-Jomart Tokayev of Kazakshtan's recent official visit to Mongolia, Kazatomprom CEO Meirzhan Yussupov said. "The opportunities for implementing joint projects will allow us to combine resources and exchange experience and technologies, which will increase the efficiency and safety of uranium exploration and production," he said. "We strive for environmentally-friendly and safe development of the industry and are confident that this partnership will help to strengthen the positions of Kazakhstan and Mongolia in the international arena.

The new cooperation creates prospects for implementing joint projects in uranium exploration and mining in Mongolia, allowing both parties to strengthen their positions in the uranium industry, Kazatomprom said. "The companies plan to expand cooperation in the future and to consider a possibility of implementing joint initiatives aimed at strengthening the positions of Kazatomprom and MonAtom in the international uranium market," it added.

The agreement between Kazatomprom and MonAtom was reached during the state visit to Mongolia by President Tokayev, which also saw the signature of a Memorandum of Cooperation in the field of nuclear energy between Kazakhstan's Ministry of Energy and Mongolia's Atomic Energy Commission.

Tokayev and Mongolia's President Ukhnaa Khurelsukh welcomed the signing of the Memorandum of Cooperation in a joint declaration on strategic partnership between Mongolia and Kazakshtan issued at the conclusion of Tokayev's visit to Ulaanbaatar on 29 October.

Mongolia has substantial known uranium resources, although no uranium has been mined there since the closure in 1995 of an open-pit mine at the Dornod deposit in the north-east of the country. The Dornod mine was operated by Russian interests, and produced 535 tU during six years of production. Ore from the mine was transported by rail to the Priargunsky facility in Krasnokamensk, Russia, for processing.

French nuclear company Orano has had a presence in Mongolia since 1997, and is working to develop the Zuuvch Ovoo project - which it says has a potential 30-year mine life - through its Badrakh Energy joint venture with MonAtom.

5
submitted 7 months ago* (last edited 7 months ago) by Emil to c/mastodon@lemmy.ml
 

Running my own instance, where do you change the max_pinned_statuses? All I find is a variable called PIN_LIMIT, not a value. Is this something you can change?

 

Holtec International said it repaired 125 damaged used fuel assemblies as part of the successful completion of its recent loading campaign of 480 used nuclear fuel assemblies into 15 HI-STORM FW dry storage casks at Angra unit 2 in Brazil.

Holtec said its team would return in early 2025 to load 75 damaged fuel containers from the Angra 1 site into 18 HI-STORM FW systems, also at the Complementary Dry Storage Unit for Spent Fuel (UAS).

Under a turnkey contract signed in 2017, Holtec of the USA supplied Eletronuclear with HI-STORM FW systems and related equipment for dry storage of used fuel from Angra units 1 and 2. Angra 1 is a Westinghouse-designed 609 MWe pressurised water reactor (PWR), while Angra 2 is a Siemens-designed 1275 MWe PWR. The units have different architectures and licensing bases, adding to the complexity of the project. Holtec modified their respective cask handling cranes and equipment for loading the fuel into the multi-purpose canisters and for moving the canisters to the dry storage facility.

PK Chaudhary, President of Holtec’s Nuclear Power Division with direct responsibility for Projects, Manufacturing & Supply Chain, said: "We thank Eletronuclear's team for their exemplary support for the Angra 2 used fuel storage campaign. We are gratified to see our innovative spent fuel storage solutions play a critical role at the Angra Nuclear Station. We look forward to a repeat success when our team returns to load used fuel at Angra 1 in early 2025."

The storage facility is designed to receive fuel elements after the cooling process in pools at the plants. They are stored in canisters made of steel and concrete to guarantee safety. It is a system which is used in the USA and is designed to withstand extreme events such as earthquakes and floods.

It includes physical security, radiation and temperature monitoring, an armoured access control centre and a storage warehouse with a technical workshop, designed and constructed by Holtec. The facility was constructed because the storage pools of both units were reaching full capacity. It is designed to hold up to 72 modules, with the capacity to receive used fuel until 2045.

Holtec said it used its Fuel Repair Device (FRD) to repair the damaged used fuel assemblies, technology which it used for the first time during refuelling at its Indian Point Nuclear plant in the USA last year. It says that its system renders a damaged fuel assembly that cannot be handled by normal means into one that can be handled in a normal manner using the plant’s existing fuel handling tooling and is "the only fuel repair technology available in the industry that involves no welding or introduction of any foreign material in the fuel pool".

Holtec says that in 2025 at Angra 1 it will load 18 HI-STORM FW systems with 75 damaged fuel containers and used fuel will be stored in MPC-37 canisters, each of which can contain 37 PWR used fuel assemblies.

4
submitted 7 months ago by Emil to c/nuclear
 

The American Bureau of Shipping has released its latest report into the potential of advanced nuclear technology for maritime applications, with a study of a small modular reactor on a standard liquefied natural gas carrier.

The report notes that large liquefied natural gas (LNG) carrier vessels are increasing in demand as the international LNG trade remains important for global energy security. LNG is stored on board in large cryogenic tanks that maintain natural gas (primarily methane) in a liquid state around -165°C. The typical energy demand for LNG carriers is between 30 to 75 MW.

The scope of the American Bureau of Shipping (ABS) study - titled Pathways to a low carbon future: LNG carrier nuclear ship concept design - was to consider and discuss a standard LNG carrier design using nuclear power for propulsion and other primary energy needs. A conceptual future zero-emissions LNG carrier is presented to illustrate how one type of advanced nuclear fission technology may be applied for shipboard power in the future, with an emphasis on what aspects of ship and reactor design may require further investigation to guide the development of the integrated technology and regulatory framework.

The transformational impact of a high-temperature, gas-cooled reactor (HTGR) on the design, operation and emissions of a 145,000-cubic-metre LNG carrier design was modeled by ABS and Herbert Engineering Corporation. ABS said the study was designed to help industry "better understand the feasibility and safety implications of nuclear propulsion and to support future development projects".

The study shows a nuclear-propelled LNG carrier would have specific design features, with reactors placed at the rear of the vessel (to shield the cryogenic cargo from the thermal load of the reactor compartment) and batteries forward of the location occupied by fuel tanks on current vessels and a reinforced hull. Given design constraints, the HTGR technology would only be suitable for larger LNG carriers.

"The study provides ABS and the industry important information on heat and energy management, shielding, weight distribution, and other design features for an LNG carrier with nuclear propulsion," ABS said. "This will assist the identification of design issues that will inform future Rules development. The study also found the HTGR technology allowed faster transit speeds and offers zero-emission operations. There would also be no requirement to refuel, although the HTGR technology would need replacing approximately every six years."

ABS said the benefits from nuclear propulsion include decarbonised high-power availability, reduced or eliminated bunker costs, and associated reduced bunker time in port.

"Nuclear power would be an ideal means of drastically abating shipping emissions, but significant hurdles remain in public perception and international regulations before this can be achieved," it adds.

"While this technology is well understood on land, adapting it for marine application is in its infancy," noted ABS Senior Vice President and Chief Technology Officer Patrick Ryan. "However, this study and the other research we have carried out clearly highlight its significant potential to address not only shipping's emissions challenge but to deliver a range of other operational advantages to the industry. ABS is committed to helping the industry evaluate its suitability for use in a range of use cases and LNG carriers is just one of a range of potential applications we are exploring."

In August 2022, ABS announced it had been awarded a contract by the US Department of Energy (DOE) to research barriers to the adoption of advanced nuclear propulsion on commercial vessels. Working with support from DOE's National Reactor Innovation Center, based at Idaho National Laboratory, ABS is developing models of different advanced reactor technologies for maritime applications and developing an industry advisory on the commercial use of modern nuclear power.

In July last year, a study commissioned by ABS explored the potential of advanced nuclear reactor technology for commercial marine propulsion. ABS commissioned Herbert Engineering Corporation to carry out a study designed to help the shipping industry better understand the feasibility and safety implications of nuclear propulsion and to support future development projects. The study modelled the impact of nuclear propulsion on the design, operation and emissions of a container vessel and a Suezmax tanker.

[–] Emil 3 points 1 year ago

I say, go for it! 😀

TerraPower has an interesting concept with the Natrium reactor, in that they combine it with heat storage in salt which is one of those things where one wonders "why didn't I think of that?". They had some false starts with designs in the past, but this seems a slam dunk as the technology is mostly there already, with decades of operational experience in sodium fast reactors across the globe.

Do report back if you reach out to them. Really interested in how it goes 🙂

[–] Emil 6 points 1 year ago

Of course I woke up to this being world news (reported by the Dutch NOS for example). So, I thought I'd share this one from a reputable source.

I've said it before: the decision by TEPCO to release this water over a period of 30 years, means it'll be a 30 year PR nightmare. This nothingburger 'news' is a good example.

[–] Emil 4 points 1 year ago

In contrast to many other SMR designs this is based on decades of experience in building these type of units. The 'X' after all stands for the tenth generation of BWR. GE-Hitachi probably have the best qualifications of any SMR design. We'll know for sure in about five years I guess.

[–] Emil 2 points 1 year ago* (last edited 1 year ago) (2 children)

Renewable energy is dropping in price so fast

We've been hearing this for many years now. I've lost count. Reality is that countries where renewables dominate, like Germany, have a significantly higher energy bill for consumers than countries where nuclear is part of the mix.

Liquid lead cooling? Yeah, that can’t possibly go wrong…

Serious question: what exactly do you think can 'go wrong' with lead-cooled fast reactors?

[–] Emil 3 points 1 year ago* (last edited 1 year ago)

So, what does this mean for consumers? Not much in terms of cost.

As per LCOE the cost is going to be 11 dollar cents per kWh. The price strike is £92.50 / MWh in 2012 pounds, for 35 years, so that's £127,31 in today's money, or 16 dollar cents per kWh. So, essentially it's being paid by EDF, cutting into their profit margins.

It's a shame though it's being delayed again.

[–] Emil 1 points 1 year ago

So, you're then saying that nuclear is somehow more threatening to our future than fossil energy is? Wow. Thanks for being clear where you stand I guess.

Just for the record: fossil fuels not only change our planet's climate, it also kills millions of people each year due to air pollution.

[–] Emil 2 points 1 year ago

Very similar for the EU (this subsidy is only used for decommissioning NPPs too).

[–] Emil 5 points 1 year ago (1 children)

Nice framing, but that's a whopping 1.2 cents in financial aid per kWh.

Sounds like great deal actually.

[–] Emil 3 points 1 year ago

In the last five years France went from total cringe to wholesome.

[–] Emil 1 points 1 year ago

I think we can have cruise ships with reactors 🛳️

[–] Emil 2 points 2 years ago

A higher price for uranium means more uranium mines are going to be activated, new techniques developed. As with the oil industry really: the more oil you need, the more you'll find. This is a good thing and the impact on the kWh price will be very minimal due to the enormous energy density of it.

view more: ‹ prev next ›